I, Prof. John Roy Robert Searl, have often stated how important it is to co-exist with other species, to help to care for them, and understand them, and I admit that zoos are trying hard to save them wherever possible.

Around the world are a few who devote their efforts to helping animals and this document is based upon one of such parties.

The Cat Survival Trust is run by dedicated volunteers and unlike many other charitable organisations, we have no salaried staff. While others appear to be constantly promoting their fundraising efforts by spending quite substantial amounts of money on advertisements, the Cat Survival Trust’s policy is to simply get on with its educational and conservation work. Unlike many organisations, we cannot afford or justify such large-scale promotional campaigns and more importantly feel that all funds which are raised should go directly and only to the purpose for which the funds were given in the first place. All fundraising events are undertaken by ourselves and not by paid helpers.

Having no paid staff, the Cat Survival Trust has virtually no administrative costs. A donation of any amount will mean that almost all will go to the projects that it was intended for and not towards administrative costs or staff salaries, something that is all too common with a number of other organisations. The Cat Survival Trust is transparent and people can clearly see the results created by kind donations. Our achievements have only been possible through the genuine practical work, which is carried out by our volunteers and supporters. The Cat Survival Trust’s future offers some remarkable new developments, and our work provides a blue print for others. However, to go forward and to achieve these unique goals, we recognise that...
further funding is necessary to realise our aims. All our funding comes from the public who kindly support the cause to educate the general public and conserve and protect the wild cats and their habitats.

CATS OF THE WORLD Experts disagree about the exact number of cat species in the world today; the *Cat Survival Trust* recognises 38, as follows:

<table>
<thead>
<tr>
<th>African Golden Cat</th>
<th>African Wild Cat</th>
<th>Asiatic Cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay Cat</td>
<td>Black-footed Cat</td>
<td>Bobcat*</td>
</tr>
<tr>
<td>Caracal*</td>
<td>Cheetah</td>
<td>Chinese Desert Cat</td>
</tr>
<tr>
<td>Clouded Leopard</td>
<td>Domestic Cat*</td>
<td>European Wild Cat</td>
</tr>
<tr>
<td>Fishing Cat</td>
<td>Flat headed Cat</td>
<td>Geoffroy’s Cat*</td>
</tr>
<tr>
<td>Iriomote Cat</td>
<td>Jaguar*</td>
<td>Jaguarundi</td>
</tr>
<tr>
<td>Jungle Cat</td>
<td>Kodkod</td>
<td>Leopard*</td>
</tr>
<tr>
<td>Leopard Cat</td>
<td>Lion</td>
<td>Marbled Ca</td>
</tr>
<tr>
<td>Margay</td>
<td>Mountain Cat</td>
<td>Northern Lynx*</td>
</tr>
<tr>
<td>Ocelot*</td>
<td>Pallas Cat</td>
<td>Pampas Cat</td>
</tr>
<tr>
<td>Puma*</td>
<td>Rusty-spotted Cat</td>
<td>Sand Cat</td>
</tr>
<tr>
<td>Serval*</td>
<td>Snow Leopard*</td>
<td>Spanish Lynx</td>
</tr>
<tr>
<td>Tiger</td>
<td>Tiger Cat</td>
<td>(* currently at Welwyn)</td>
</tr>
</tbody>
</table>

Why not contact *The Cat Survival Trust* how to become a member?

Most of the wild cats at *Welwyn* have been rescued from zoos or private collections.

VISIT THE CAT SURVIVAL TRUST

The Cat Survival Trust is not currently open to the general public. Only members and their guests are permitted to visit the cats. A personal guided tour is available to single or organised parties. A friendly and informative tour of the *Cat Survival Trust* enables visitors to learn about the important work we carry out here in *Welwyn* and abroad.

As education plays an important role for the *Cat Survival Trust*, schools, young adventure groups, etc are encouraged to visit, teaching the young about wildcat conservation and the importance of the surrounding environment in which they live.

All guided tours are undertaken on a friendly one-to-one basis as we appreciate a great deal the support of all our members. We hope to promote not just a better understanding and knowledge for each visitor but more importantly make each visitor feel close to and an integral part of the work of the *Cat Survival Trust*.

Please telephone 24 hours before an intended visit to make an appointment.

CAT SPONSORSHIP

The cost of caring for up to fifty captive wild cats is quite considerable. To help with these costs the *Cat Survival Trust* offers a Cat Sponsorship programme for members, friends and groups to sponsor an individual cat of their choice. The annual cost of sponsoring a wild cat depends on the species and anyone interested in sponsoring one of our cats can write for a sponsorship leaflet and application form for full details of the scheme.

I am aware that most readers has no idea that my interest also included wild life, unfortunate only the last 25 years I have not been in position where I could have animals to keep like I had at Mortimer.
Ess, an African Serval

VOLUNTARY WORK

People interested in undertaking voluntary work here at the Cat Survival Trust are welcome to apply at any time.

Some volunteers may wish to stay for just a day while others may decide to stay for a weekend or longer.

Accommodation can be provided in on-site caravans and, though by no means luxurious, they do offer a basic, warm and clean place to stay.

Whatever period of time a volunteer can spare, the Cat Survival Trust genuinely appreciates this support. Though directly working with the wild cats is on offer at times, work that is more crucial entails that of construction, on-site maintenance and groundwork (bricklayers, carpenters, electricians etc).

We also need assistance in our offices and library. Anyone skilled in these areas should contact the Cat Survival Trust. 07/2005 CL

THE CAT SURVIVAL TRUST

Reg Charity No. 272187

The Centre, Codicote Road, Welwyn, Hertfordshire, AL6 9TU
Tel: 01438 716873/716478

Website: www.catsurvivaltrust.org
Email: cattrust@aol.com

I wish to confirm here that one of the key men who run this establishment is Dr. Terry Moore, whose interest in cats and the rain forest are his main objectives. Agree he has done work with me upon film clips for youtube, which open the door to this technology to the people of the world, which we are all grateful for his time and effect, which was involved.

Page 17.353
The only British charity devoted to the care, rescue and conservation of wild cats and the preservation of their natural habitat like our Argentine reserve.

The entrance to our reserve in Misiones, Argentina.

The Cat Survival Trust is a remarkable charity, which concentrates on the protection of the world's wild cats and their environment.

It takes in surplus, unwanted and confiscated cats from zoos and private collections has found homes for over 2000 misplaced cats and bred 282 cats in captivity since its formation in October 1976.

It also purchased a 10,000-acre reserve in North East Argentina: and studies the effects of climate change on the cats and their habitats.

In 1991, the Trust launched a campaign to purchase a 10,000-acre rainforest reserve in northeast Argentina.

The campaign needed £300,000 and by 1992, the purchase had been completed. This new reserve, which has now been registered as a Provincial Park, has full legal protection in Argentina and the Trust worked with the Argentine authorities to pass a law to protect a green corridor totalling 3,161,222 acres.

The law creating the green corridor was passed on 29 November 1998. The work carried out by the Ministry of the Environment is an amazing achievement and an important example to other countries of a commitment to their environment.

Argentina has seen the benefits of this commitment in increases in tourism revenues, which have doubled each year for the past three years. The Cat Survival Trust has now received four awards in Argentina for its environmental work there.

Prof. Searl has stated so often if we all work together we could make planet Earth a paradise for all beings.
The 1991 campaign was a very small project. Remarkably, it only took just over 2,400 individual donations from schools, companies, environmental organizations and individuals to raise the £300,000 needed. Most of the funding came from committed environmentalists, members of 32 environmental groups who publicized the details of the campaign in their own journals, magazines and newsletters. In 1991, a survey indicated the existence of approximately 40 wild cats representing five species in the proposed area to be purchased. There are now over 70 cats in the reserve.
A new campaign to be launched this year aims to save a total of 300,000 acres in seven countries. This will also provide much needed funding for research work at our headquarters in Welwyn and financial assistance to reserves in countries struggling to maintain existing National and Provincial Nature Reserves and Parks.

The countries selected for the next stage include Argentina, Borneo, Chile, Costa Rica, India, and South China, all countries that are relatively socially, politically and economically stable, all countries that have a historic and ongoing commitment to environmental protection. When ready, details of the new campaign are to be circulated to over 29,000 organisations with a membership and support group of over 198 million people. The campaign in 1991 was only sent to 71 environmental organisations!

What is the bottom line on Climate Change?

The Trust has an interesting view of life for us all in the new millennium. It is now agreed that climate change and the El Niño effect are not random phenomena, which are self-generated through the effects of natural changes in ocean currents and other climatic effects. The close cumulative correlation between the appearance of the El Niño effect and climate change and the huge areas of forest burning on either side of the equator, are almost certainly the cause. It is now essential for humankind not only to preserve the remaining forests of the world, particularly within the tropics, but also to assist the regeneration of vast areas of natural forest in damaged areas, if humankind has any chance of survival in the future.

As more and more forest is destroyed around the tropics, the natural hydrological cycle and weather stability is being lost. Forest absorbs the intense heat radiation from the sun to create growth, seeding continuous evaporation and precipitation between forest and cloud. Forest absorbs tropical rainstorms during the rainy season and releases this moisture as a continuous flow throughout the dry season into streams and rivers, providing clean portable water for the farmland and its inhabitants during the hot dry crop-ripening season. Forests are nature’s natural dams. Each tree absorbs its own weight in water and releases this moisture as the tree dries and shrinks under the intense heat it receives from the sun during hot dry summers.

Howler monkeys in our reserve.
An owl perfectly hidden in one of our trees.

As forest is cut and burnt, more bare land absorbs the heat of the sun. This creates greater air temperature, a major additional cause of global warming during the day. The increased differential in temperature during the night, creates wind eddies which can then go on to seed hurricanes and tornados. This all helps to fuel the development of unnatural weather conditions, including excessive winds and rains. These unnatural weather conditions help to remove the remaining thin layout of soil, preventing the regeneration of forest and laying bare the land, which adds to the increasing desertification of otherwise productive land. Man, not nature, causes this process.

The more forest is cleared in the tropics, the greater the air temperature. The greater the temperature, the greater the carrying capacity of the air for more moisture. As this hot humid air has less forest on which it can fall each year, the increased winds above the new cleared land have carried tropical weather conditions further north and south of the tropics. This creates the increased incidence of storms and floods we now experience around the world and carries the warm air to the poles, where increasing quantities of ice continue to melt.

An area of unprotected forest in Malaysia where logging has occurred on a slope!
Protected forest in Malaysia.

This process will increase unless and until the remaining forests is protected and damaged forest areas are allowed to regenerate. The tropical rain is simply following the tropical hardwood to the developed temperate countries where the timber has been converted into window frames and toilet seats!

Total environmental protection needed to protect all species of fauna and flora.

The Cat Survival Trust, a charity registered in 1976, is not just concerned about the 37 species of wildcat including such cats as Kodkod, the Geoffroy's Cat and the Pampas Cat of South America the Black Footed Cat, the Golden Cat and a Serval of Africa, and, the Pallas Cat, Chinese Desert Cat and Rusty Spotted Cat of Asia.

Which are just a few of the world's cats being pushed towards extinction, as their habitats are being taken by the profligate breeding habits of just one animal.... the human.

Encouraged by most of the world’s zoologists, the cats at the Cat Survival Trust bred 187 cats in captivity between 1976 and 1988. The general aim of most captive collections of animals has been to build up captive stocks in order that specimens could be available at such time in the future, when land can be set aside for reintroduction.

By 1988 research into the various cat reintroduction schemes, carried out by a number of wildlife organisations, discovered that this various cat reintroduction schemes, carried out by a number of wildlife organisations, discovered that this work enjoyed a very low success rate. It costs an average of £30,000 per cat, to reintroduce the cat into its indigenous country.

Transportation to the indigenous country, provision of quarantine facilities for six months where the cat can be trained to catch live food and adjust to local diseases and then radio collaring the cat for another six months, only protects one cat for one year. Reintroducing 10 cats would cost about £300,000 for one year and this would fail to provide any protected habitat or any degree of protection after the first year's work.

In 1992, the same amount saved 10,000 acres with 40 cats from five species already resident in the land the Trust purchased. At an average of £25,000 a year running costs, the numbers increased to 70 cats in seven years. As a bonus, 5 million trees, billions of insects and hundreds of thousands of plants, mammals, primates, reptiles, fish and birds are being protected at the same time in a reserve that has legal protection forever.

As cats are at the terminal end of the food chain, it is necessary to protect the whole ecosystem in order to preserve the cats. The Reserve has many exceedingly rare species of fauna and flora.

Page 17.358
Water flowing in the dry season in our reserve! South American Ocelot.

Also found in this reserve are over 50 locally used medicinal plants and the original genetic stocks of fruit, nuts and vegetables, from which farm commercial hybrid plants have been developed. A tree with a cherry without a pip grows wild in the reserve. How many additional new foods and medicines will be found in future years?

Protection of forest with its vast diversity of life forms provides many benefits for man. Each organism processes the minerals within the forest and in the underlying rock structure, mineralising the streams and rivers.

These essential minerals and trace elements are needed for the future of all life forms in the forest and in our diets and are released into the water escaping the forest.

The crops irrigated in farm land with this water and the water itself provides a constant source of minerals and trace elements for the humans drinking this water and buying these foods which are exported all over the world.

Real solutions for an endangered planet.

This year (2009), the new campaign is to be released. It has two stages. The first stage is to raise funds to save 300,000 acres of forest in seven different countries. The second stage, which is to be launched later by a new not-for-profit company is a revolutionary commercial plan to save at least 3 million acres of forest through a novel new approach to make it possible for the environment to become self sustainable.

Prof. Searl has always stated that unless we all work together to clear up the mess we have and still doing there will be no future for our grandchildren; therefore such work as detailed here is just an effort by a few to improve the planet status for the benefit of all creatures regardless.

Page 17.359
A Geoffroy’s Cat from Argentina. Snow Leopard Cubs at The Cat Survival Trust.

A number of real solutions to world problems are to be launched by the charity.

Details of these proposals will be announced on www.catsurvivaltrust.org the Trust's website. The public may register for details of our work and find out how they can help by writing to the Cat Survival Trust, The Centre, Codicote Road, Welwyn, Hertfordshire, AL6 9TU or by sending an e-mail to cattrust@aol.com

Saving and repairing cat habitat is critical for the future survival of all life forms, including, ultimately, ourselves. It is no longer enough to sort out our own backyards. If our common support system, the Earth, fails, all we achieve as individuals will have been in vain. Every charity deserves support. It is time to direct more support to our common environment!

The Future.

There is hope for us all! It is possible for us to turn this planet into a utopia for the future. Do not expect the leaders to find the solutions. Corruption, self-interest and short-term policies by many politicians have helped many countries take retrograde steps to increase the environmental degradation of our common fragile ecosystems.

There are now over 29,000 organisations with a membership and support group of over 198 million people, actively looking for solutions to sustainable future survival for all fauna and flora on our planet.

The Trust is finding solutions. The Trust owes its success not just to its director but also to the hundreds of volunteers and members that have been involved in the development of the charity since it is registration in 1976. The achievements are due to the combined efforts of all those volunteers past and present. It is important to note that here in the UK; the charity has never had a single paid member of staff in its 33 years of operation.

Our work in Welwyn, rescuing cats from zoos that close and from people that keep them illegally will continue, but habitat protection benefits not only the cats more efficiently but all of us. The Trust has a number of very important projects for the future. We would recommend that our website be watched on a regular basis for details of these forthcoming projects.

You can register for a free email newsletter by sending ‘Subscribe’ as the subject in a blank email to cattrust@aol.com or by becoming a member of The Cat Survival Trust
We do require animals and the trees – they are vital to the planet as a whole.

Find out about the issues facing us all and support those organisations working to save and improve life on our fragile planet. Together we can make a difference. If we wait for the point of no return, life on this planet will become unbearable. In the next few years, the problems will land in your back yard. ACT NOW!

My sincere thanks to Dr. Terry Moore for the number of times he has collected me to take me to hospital or airports or rail stations and then collect me and returned me back home, without charge for his time or cost.

Please help to save us so your grandchildren will also be able to see us as you have seen us, unless you stop your destruction of our home they will never see us as you have seen us.

We need your help now before it is too late to save us – we are a part of you and your existence if you would only respect us then we shall respect you.

I, Prof. John Roy Robert Searl hereby thank Dr. Terry Moore for his devoted contribution in his struggle to save these dear creatures for our children and their children of the future to be able to watch.

In addition, his determination to fight to save the forests of the world so all creatures may live in protection zones where they can survive in peace without the fear of man.

If we call ourselves human now is the time to prove it, not by words but by deeds.

It is true that the universe and the stupidity of humankind are endless, but I am not quite sure about the universe.

This Document released to the public by authority of:

IT IS TIME TO STOP – THINK – ACT - your future depends upon you now for help, join us and become part of the future that is meant to be or there will be no future for our children.

The state of this planet has not been created by a GOD but by man himself by greed; it is now time to correct this problem NOW.

Page 17.361
First, let me say thank you: all you volunteers who informed me that they would fly the Inverse-Gravity-Vehicle (I.G.V) for me.

First you need to be a pilot with experience of private flying and commercial flying and would like a fighter pilot who are use to speed, not that they have done any such speeds as the IGV such as 54,000 mph minimum on deep space missions.

Worse of all, is you have to be able to cope with so many operations should any member goes down sick on mission.

I feel that 24 hour clock ship time could cope with an 8 hours duty system and maintain fully functional operation if required to take over from automatic control.

It is a question of planning flow charts of operations in the even this happen or that happen what course of action should be taken as standard functions.

Any case there is much to discuss upon what components shall be used in design and their functions to understand.
Flying is without question a wonderful pleasure technology, something I enjoyed accept there was just one aircraft that I never did really like flying, which was the Piper PA-28, unfortunate I had no option as my craft was under checks to set the magnets adjustments.

What I did not like about the Piper PA-28 was the fact that the nose appeared to be far too heavy, it did not like down pressure upon it and I had to use more fuel to maintain height.

The other issue was if you had four members onboard and there was a need to disembark very quick – I doubt that would had been possible, simply due to its design.

Never mind that – the thing is I have experience flying various aircraft, and only once did I have a heavy nose wheel landing and that was the Piper PA-28, in my case I got away with no damage.

The only other aircraft I had problem with flying solo was landing with the Cessna 150 the wind caught me from the left as the wheels where just about touching the runway.

Which I corrected that movement only to be wham from the right side to which I corrected the reaction, at no time was the aircraft in danger of leaving the runway and I continued the landing with no more problems; unfortunate the wrong person happen to be watching, the airport owner who rush to instruct the test examiner to take my licence away as I just done a bad landing.

On arriving to sign out the test examiner came over to me to say that Dud want him to take my licence away, I said why, I never left the runway or is there any damage done, I am not shaking with nerves, and ready to take another flight.

He reply I know you will cope with anything so I take no notice of him, I was flying when the radar stations had shut down due to very bad weather and you were on your own, sometimes thick fog was the problem.

Thus the weather can be a bit naughty at times for flying, but if you give and take-flying private is great fun.

First, you have to learn the rules of the air, agree that you start only with visual flying mode, this you cannot do with the Inverse-Gravity-Vehicle as your brain functions far too slow to cope.

Thus, you have no option until you pass conventional instrument flying, but there is a big problem because the instrument flying of the Inverse-Gravity-Vehicle is slightly more complex than a fighter aircraft uses.

So let me put you through the training from the start requirements of this section for now.

I agree that many statements have been made to illustrate the importance of instrument flying.

For one I have called it a pilot’s best life insurance policy, and I agree that with regular practice being the premium required to keep it up to date.

I know that it has been said that no pilot is worthy of the name ‘pilot’ unless he / she can fly proficiently by instruments as well as by visual reference to the ground, and so on.

In reference to the Inverse-Gravity-Vehicle flying visual is not in the same domain – its instruments flying even though the instruments are showing the ground reference as such, it is not your eyes watching out of the cockpit at your surroundings.

No matter what phases are used to drive the point home they are all meant to make a student pilot realise that he / she cannot always fly by “feel” alone.
Have you ever tried to walk as far as you can along a straight line when blindfolded?

Although you have been able to walk straight for most of your life you lose the ability to do so as soon as you are deprived of visual references.

When flying one is always likely to encounter cloud and as soon as this happens visual, reference is lost and the aircraft must be flown according to indications given by instruments.

That applies to the Inverse-Gravity-Vehicle 99 times out of 100 missions it will pass through cloud that is certain, as it will fly all weather conditions.

The object of these seminars, in conjunction with many others on the subject, is to teach you how to use these instruments, but your flying instructor is the only person who can give you necessary practical instruction.

Reading this book on the subject will I hope will help you to understand the instruments and tell you how to use them, after which you should put what you have read into practice; but make sure that you have someone with you to act as safety pilot.

In this first seminar, I gave a full description of the six instruments collectively known as the ‘basic flight panel’, and second seminar I covered how these instruments can be used to interpret attitude and control flight.

The basic flight panel comprises six instruments, namely: The artificial horizon; the turn and slip indicator; the direction indicator; the vertical speed indicator; the altimeter; the air speed indicator.

Figure 1 shows how these instruments were arranged in what was known as the standard instrument flying panel but this arrangement has not been adhered to and they be found in different positions.

The first three mentioned above are gyroscopically controlled and the latter three, air pressure controlled.

To understand how the gyroscopically controlled ones function, some knowledge of the principles of a gyroscope is necessary.

THE GYROSCOPE:

The gyroscope is vital to understand for the Inverse-Gravity-Vehicle (I-G-V) as it plays a vital role in the functions of flight control system.

Any rotating mass is subject to gyroscopic principles and the term ‘Gyroscope’ is used to define such a rotating mass designed to make use of these principles, and that is precisely what I have done with the Inverse-Gravity-Vehicle.
The gyroscope possesses two fundamental characteristics, which are:

1. **Gyroscopic inertia or rigidity.**

2. **Precession.**

Rigidity is the tendency to resist change in the plane of rotation.

A gyroscope is usually made of a heavy metal, not of aluminium Al 13, the weight being concentrated around the perimeter of the rotor and the rotor is driven at high speed.

Figure 17.2.

As the gyroscope rotates at high speed, each molecule tends to fly out at a tangent and will tend to resist any effort to change its direction.

This tendency depends upon the speed of rotation, the mass of the rotor and the distance of that mass from the axis of rotation.

Figure 17.3A Figure 17.3B.

Now the gyroscope effects of the **Inverse-Gravity-Vehicle (I.G.V)** have no real axis as such, in the sense of the term, instead, the outer plate is the axis of the gyroscopic affects to be generated, but such effects still depend on the rotation of speed.

Precession is the resultant movement of a gyroscope to an externally applied force.

This movement is in a plane at right angles to the applied force and Figure 17.3 shows why this occurs.

Any force, such as gyro bearing friction or the rotor out of balance, will cause the gyro to precess and for this reason, minimum friction and accurate balance are of great importance.

The **Inverse-Gravity-Vehicle gyroscope effect** is not like a normal accepted gyro – no sir – it is a split personality – of mass – thou acts as a solid mass – its effects are much stronger in function.

That drive train of the **Inverse-Gravity-Vehicle (I.G.V)** has extremely complex function and it will take time to create the full facts that is involved.

It might be true to say that the **Inverse-Gravity-Vehicle** contains within its function many individual gyros acting in phase thereby creating a complex gyro in total.
When a gyroscope is spinning it will maintain its plane of rotation in space, but there is no definite attitude in space, which it will assume.

Figure 17.4

Figure 17.3A shows how one would expect the gyro to move, which is how, in fact, it would move if it were not rotating.

Figure 17.3B shows how it would move when rotating at high speed.

The particle at X tending to fly out at a tangent is subject to a force in the direction \(xy \).

When it is subjected to an external force \(EF \) in addition, it tends to move in a direction of the resultant of these two forces, i.e. \(xz \).

That is amazing, here again the law of the squares is proven correct.

It will continue to move until they both lie in the same direction.

The movement is in the plane at \(90^\circ \) to the external force.

When calculating the direction in which the gyro will move, imagine the point on the perimeter at which the force is applied then imagine point moved round \(90^\circ \) in the direction of rotation and the applied force acting there and moving the gyro in that direction. Figure 17.4.

Well that was a nice short sweat explanation of a gyro effects: do you not agree you sweat little bugger Flowerbower?

You can rest assure that is not the end upon the subject on gyros – no sir – but for now we shall move forward to the next problem.

For there are many problems to look at, sometimes one has to commence just about the basic part to help my readers to absorb the contents whereby they can get more interested in the subject under discussion.

Of course, a key problem is a mental sick person name Flowerbower; I have to admit that having cared for 96 mental patients, none of whom was as ill as this man on youtube is. He sure makes them all appear sane in reference to him.

Do not forget to bow three times before him as he is god almighty and we must show him high respects or you will be next on his list for that ray gun of his that sits between those two checks called an arse.

There are far better things we can do here, and I will think what next should be the article to cover as there are so many to handle in my life.

Page 17.366
That is a good start at my thinking session, excuse my drawings I am not an artist, nor am a sex symbol like flowerbower.

Just an old worn out man who had no formal education, thank heaven for that, just think if I had a formal education I be just as insane as Flowerbower is.

A type of gyroscope known as an ‘Earth Gyro’, which to my mind is as good as any other, name, controls the artificial horizon.

Hi there: students, you who are artists, got any idea on a cartoon poking fun at Flowerbower with me teaching him about reality.

Come on surely you can produce some funny ones that I can insert in this book after all its time to show Flowerbower that if he insults people, he has to expect them to hit back at him.

The gyro rotates about the vertical axis, interesting point as it might suggest that within the Inverse-Gravity-Vehicle (I-G-V) the plates act as the vertical axis for the roller sets.

It is contained in a housing, which forms the inner gimbal ring.

This housing allows movement about the lateral axis only but it is pivoted into the outer gimbal ring, which has freedom of movement about the fore and aft axis and pivoted to the instrument case.

This arrangement allows the gyro to maintain its plane of rotation – within limits – relative to the earth while the conventional aircraft and instrument case move about it.

The horizon bar is so actuated that the conventional aircraft movement relative to the true horizon is accurately shown.

The gyro is air driven.

Air enters the gyro housing and is sucked out of the instrument casing by the suction system of the aircraft.
It is sucked out of the gyro housing into the instrument case through four ports in the housing base.

Pendulous vanes half cover each of the four ports.

When the gyro is rotating about its vertical axis each pendulous vane, hanging vertically by gravity, covers half a part but when the gyro is displaced from the vertical axis the vane on one side may completely cover its port while on the other side may completely uncover its port.

This exerts a force on the gyro, which will cause it to precess back to its correct position.

At Figure 17.6(a), the gyro is spinning about its vertical axis.

All ports, A, B, C and D, are half open so there is no external force and the gyro maintains its plane of rotation.

Figure 17.6(b) the gyro has been displaced from its vertical axis and therefore the port at A is fully open while that on the opposite side, at B, is fully closed.

Figure 17.6

This causes an external force to be applied to the gyro as shown and the resultant force to act upon it restoring it to rotate about its vertical axis once more, when the external forces being equalised have no effect.

The dial of the instrument shows the horizon line, which is actuated by the gyro, and a miniature aircraft which, being fixed to the dial, moves as the aircraft moves.

This arrangement provides an immediate pictorial indication of the movements of the aircraft relative to the horizon line.

Figure 17.7

A pointer fixed at 90° to the horizon line: moves over a scale and indicates the actual angle between the lateral axis of the aircraft and the horizon.
VARIATIONS:

The illustrations show only the necessary parts of the artificial horizon.

They are presented in different ways according to make of the instrument and vary as follows:

1. The miniature aircraft may be shaped differently.
2. The position of the miniature aircraft may be adjustable by means of a turn button.
3. The angle of bank indicator may be at the top of the dial.
4. The areas above and below the line may be coloured or lined in some way.
5. There may be provision for caging the mechanism, i.e. locking it in a fixed position to prevent damage during aerobatics dear Flowerbower.

LIMITS:

Because of construction, problems there are certain limits to conventional aircraft movements which if exceeded will topple the gyro and render the instrument useless.

The limits are such that ordinary manoeuvres are well within them but they should be known and checked for the type of horizon fitted to your conventional aircraft.

They are normally between 90° – 110° in the rolling plane and 55° – 60° in the pitching plane.

There is, of course, no limit in the turning plane.

If it is intended to exceed these limits the mechanism should be caged.

ERRORS:

The instrument is subject to a few slight errors due to forces, which act upon it.

The errors are slight: should be known to all pilot students.

Only one of them will be mentioned here because it could lead to danger.

When the conventional aircraft accelerates rapidly, as when taking off, the gyroscope will be subjected to a force, which will cause it to depress and slightly tilt the horizon line away from its true position.

If, just after becoming airborne, the miniature aircraft is placed on and parallel to the line the aircraft will descend and turn slowly.

Near the ground, this could be extremely dangerous.

I have to admit here that when I take off I never use the horizon line as reference, I use my eyes and compass only, and I must admit that at no time have I hit a problem on taking off.

Now I come to think of it I do not recall ever being instructed upon this problem, guess that I perform the take-offs so perfect that the instructor never consider that he need to inform me of this problem.

Any case the instructor would not had inform me as I should be flying visual not instrument, unknown to him once I was over 400 feet and recover flaps I was flying instrument not visual as he thought I was doing.
There was never any problem with the actual test examiner as he had gone out on flights with me and quickly realise that I was flying instruments and not visual but said nothing because he knew how desperate I was to get flight experience to fly the I.G.V when it became available.

Any arguments from my training instructor about me flying two different aircraft while training was always countered reacted with the words he has no problems with his training program and we approve of what he is doing.

In addition, when he complained that I was flying in cloud the test examiner replied he came out the right way up.

You can guess that my instructor felt that his authority was being undermined.

My other instructor at the higher school never bother at all, I was flying that faster heavier aircraft perfect not once did he had to take over.

He was only there to meet the requirements of the laws that a second pilot had to be onboard, as I was carrying passengers, in case I was taken sick there was someone able to return and land the aircraft.

PILOT’S SERVICEABILITY CHECKS:

If the gyroscope is, air driven the suction required is 4 – 4½ Hg – *NOTE* – some are electrically driven.

After starting, check suction and see that the horizon line takes up a horizontal position near to the miniature aircraft.

During taxying, turn the aircraft gently to left and right and check that the line remains horizontal.

NOTE: The gyroscope will not attain full working speed until five minutes after starting but will give reliable indications after approximately two minutes.

REFERENCE:

When in stable flight use the artificial horizon to check whether the attitude of the conventional aircraft has altered.

When altering attitude, use it to check that the attitude alters as desired.

Remember that only the angle of the bank is precisely indicated and that performance is not indicated at all.

This ends this issue for the moment and will continue another day, upon the subject of flying.

This document released to the public by the authority of:

Prof. John Roy Robert Searl Head of R&D Human Studies.

Manned Flight Division.

Page 17.370
As stated before, the need to understand about the types of accidents relating to conventional aircraft, which have been reported, I took the year 1971 as a test bed for study.

I have already presented tables 1 and 2 in details as I have filed here, now I shall present table 3, if only to shut up that nut case named Flowerbower with his expertise about flying.

Moreover, for you real experts who do exist in the domain of reality to question why a boy with no formal education takes such interest in flying, unless he actually has a reason for doing so.

What would such a reason relate too?

Clearly, this class of information is not required for a private flying license or for a commercial pilot’s license.

Thus, this uneducated boy must be doing something unusual, as he needs to fly different aircraft under different weather conditions and landing taking off from different airports even large fast aircraft into small airfields – why would anyone want to undertake such action.
Why would Searl want to know all this Flowerbower?

Do you think that he wants to enter a quiz completion to win a million?

Sorry son: no it is not for any completion; but to get an understanding of reality, my interest is why do such accidents happen and can we design them out of the system, after all, you do not want spacecrafts to crash on planet Mars do you?
When you are designing a new concept in flight technology you must understand what problems exist at that time in conventional flying otherwise, how can you create a new type of craft that does not have the same problems to those we have already in service

Swallow Command cannot create space transport that contains the same problems of today.

Page 17.373
Hello you old bugger Flowerbower, this day is coming when Television will again be full of news about you know who, yes that’s the boy who had no formal education, just as it was in the 60s, only this time with a difference we shall be doing the publicity.

That symbol will be on the side of that lorry, Flowerbower, I will be delighted that you were on its first transmission live; presented with the medication of 25 stokes of my cane with love and devotion for all to witness that you have received your honoree degree as professor of bullshit.
TABLE 4. ACCIDENTS TO GLIDERS:

<table>
<thead>
<tr>
<th>Serial No</th>
<th>Date</th>
<th>Glider</th>
<th>Regn.</th>
<th>Location</th>
<th>Injury to Occupants</th>
<th>Damage to Glider</th>
</tr>
</thead>
<tbody>
<tr>
<td>207</td>
<td>9.1.71</td>
<td>K.7</td>
<td>BGA 1589</td>
<td>Sutton Bank Gliding Site, Yorks</td>
<td>Crew: 0 0 0 2</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>10.1.71</td>
<td>K.13</td>
<td>BGA 1396</td>
<td>Nr Dunstable, Beds</td>
<td>Crew: 0 0 0 2</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>14.3.71</td>
<td>Capstan</td>
<td>BGA 1249</td>
<td>Husbands Bosworth Aerodrome, Leics</td>
<td>Crew: 0 0 0 2</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>28.3.71</td>
<td>T.21</td>
<td>BGA 1215</td>
<td>Turweston Aerodrome, Northants</td>
<td>Crew: 0 0 0 2</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>2.5.71</td>
<td>Olympia 460</td>
<td>BGA 1201</td>
<td>Nr Alton, Hants</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>2.5.71</td>
<td>Olympia 2b</td>
<td>BGA 997</td>
<td>Wisbech, Cambs</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>8.5.71</td>
<td>SHK</td>
<td>BGA 1581</td>
<td>Lasham Aerodrome, Hants</td>
<td>Crew: 0 1 0 0</td>
<td>Destroyed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Again, I must think hard if some of these events were more a case of misjudgement, pilot error under estimating what clearance he had to land in, until there was no return.

Page 17.375
TABLE 4. ACCIDENTS TO GLIDERS (Continued):

<table>
<thead>
<tr>
<th>Serial No</th>
<th>Date</th>
<th>Glider</th>
<th>Regn.</th>
<th>Location</th>
<th>Injury to Occupants F S M N</th>
<th>Damage to Glider</th>
</tr>
</thead>
<tbody>
<tr>
<td>214</td>
<td>9.5.71</td>
<td>T 31</td>
<td>BGA 887</td>
<td>Pocklington Aerodrome, Yorks</td>
<td>Crew: 0 1 0 1</td>
<td>Destroyed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>19.5.71</td>
<td>Olympia 403</td>
<td>BGA 1278</td>
<td>Sutton Waldron, Dorset</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>28.5.71</td>
<td>Swallow</td>
<td>BGA 1048</td>
<td>Duxford Aerodrome, Cambs</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>29.5.71</td>
<td>Eon Baby</td>
<td>BGA 628</td>
<td>Bardney Aerodrome, Lincs</td>
<td>Crew: 0 0 0 1</td>
<td>Destroyed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>30.5.71</td>
<td>Olympia 463</td>
<td>BGA 1171</td>
<td>Nr Haverfordwest Aerodrome, Pembroke-shire</td>
<td>Crew: 0 1 0 0</td>
<td>Destroyed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>30.5.71</td>
<td>T 31</td>
<td>BGA 1255</td>
<td>Bardney Aerodrome, Lincs.</td>
<td>Crew: 0 0 1 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>3.6.71</td>
<td>T 31</td>
<td>BGA 972</td>
<td>Nr Colbren, Brecon</td>
<td>Crew: 0 0 1 0</td>
<td>Substantial</td>
</tr>
</tbody>
</table>

Well slowly we see the problems that has taken place during one year only, could they been avoided?

Page 17.376
TABLE 4. ACCIDENTS TO GLIDERS (Continued):

<table>
<thead>
<tr>
<th>Serial No</th>
<th>Date</th>
<th>Glider</th>
<th>Regn.</th>
<th>Location</th>
<th>Injury to Occupants</th>
<th>Damage to Glider</th>
</tr>
</thead>
<tbody>
<tr>
<td>221</td>
<td>5.6.71</td>
<td>K.13</td>
<td>BGA 1457</td>
<td>Firle Gliding Site, Sussex</td>
<td>Crew: 0 0 0 2</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The glider ground-looped on landing, causing damage to the port aileron and main spar.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>10.6.71</td>
<td>Phoebus</td>
<td>BGA 1547</td>
<td>Elmstone Gliding Site, Hardwicke, Nr Cheltenham, Glos</td>
<td>Crew: 0 0 1 0</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In an attempt to land in a field the downwind boundary of which was obstructed by power cables the glider over-ran into a barbed-wire fence.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>11.6.71</td>
<td>Skylark 4</td>
<td>BGA 1192</td>
<td>Challock Gliding Site, Kent</td>
<td>Crew: 1 0 0 0</td>
<td>Destroyed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Following a winch-launch during which a height of only 250-350 ft was attained, the glider turned through 180° and flew downwind over the gliding site. The aircraft went into a spin when attempting a turn back towards the landing area and failed to recover.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>12.6.71</td>
<td>Bergfalke 2</td>
<td>BGA 1610</td>
<td>Sturgate, Lincs</td>
<td>Crew: 0 0 0 2</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The glider over-ran the cable in the initial take-off run. The cable was released but the shock-ropes had meanwhile wound around the undercarriage. Further movement by the cable jerked the glider into the air and it then hit the ground in a nose-down, sideways attitude.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>13.6.71</td>
<td>ASW 15</td>
<td>BGA 1597</td>
<td>Weldon, Nr Corby, Northants</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>After landing in a sports field the pilot ground-looped the glider in an attempt to avoid contact with a boundary hedge. The glider was damaged when it struck the hedge tail-first.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>19.6.71</td>
<td>K.7</td>
<td>BGA 1589</td>
<td>Sutton Bank Gliding Site, Yorks</td>
<td>Crew: 0 0 0 2</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The fuselage was broken after the mainwheel had run into a hollow during the landing run.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>24.6.71</td>
<td>Skylark 3</td>
<td>BGA 914</td>
<td>Long Mynd Gliding Site, Salop</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>On final approach, during a steeply banked turn, the starboard wing-tip struck the ground.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4. ACCIDENTS TO GLIDERS (Continued):

<table>
<thead>
<tr>
<th>Serial No</th>
<th>Date</th>
<th>Glider</th>
<th>Regn.</th>
<th>Location</th>
<th>Injury to Occupants F S M N</th>
<th>Damage to Glider</th>
</tr>
</thead>
<tbody>
<tr>
<td>228</td>
<td>27.6.71</td>
<td>K.6</td>
<td>BGA 1840</td>
<td>Stoke Meir Aerodrome, Staffs</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shortly after the start of the take-off run on a winch-launch the starboard wing-tip caught in long grass, the glider ground-looped to the right and the fuselage fractured near the rear of the mainplane.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>27.6.71</td>
<td>Skylark 4</td>
<td>BGA 1089</td>
<td>Harrietsham, Crew: 0 0 0 1</td>
<td>Substantial Kent</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The glider's tail was severely damaged and its fuselage broken when a landing was made in a field of standing corn.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>2.7.71</td>
<td>IBM Diamant</td>
<td>BGA 1477</td>
<td>Coombe, Nr Woodstock, Oxon</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The glider hit a hedge during the final stages of the approach.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>8.7.71</td>
<td>Swallow</td>
<td>BGA 924</td>
<td>Cambridge Airport</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A heavy landing, following a late round-out, resulted in damage to the glider's starboard wing root and the bottom of the fuselage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>10.7.71</td>
<td>Phoebus</td>
<td>BGA 1542</td>
<td>Sedgehill, Dorset</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>On the final approach of a field landing the port wing of the glider struck the top of a hedge.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>11.7.71</td>
<td>Dart</td>
<td>BGA 1245</td>
<td>Portmoak Gliding Site, Kinross-shire</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>During an aero-tow launch the glider sank back onto the ground shortly after becoming airborne. As it touched down a loud crack was heard and it was found that the fuselage had broken aft of the main spar.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>14.7.71</td>
<td>Skylark 4</td>
<td>BGA 1103</td>
<td>Methy Bridge, Inverness-shire</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>During touchdown in a field the starboard wing touched the ground and the glider ground-looped.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I hope everyone can read these sheets of data, if you really study them, they are interesting.

Page 17.378
TABLE 4. ACCIDENTS TO GLIDERS (Continued):

<table>
<thead>
<tr>
<th>Serial No</th>
<th>Date</th>
<th>Glider</th>
<th>Regn.</th>
<th>Location</th>
<th>Injury to Occupants</th>
<th>Damage to Glider</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>15.7.71</td>
<td>Torva 15 Sport</td>
<td>BGA 1641</td>
<td>Sutton Bank Gliding Site, Yorks</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A gust of wind lifted the starboard wing as the glider was about to touch down. The aircraft swung round and struck the ground tail first, damaging the fuselage and undercarriage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>17.7.71</td>
<td>K.13</td>
<td>BGA 1457</td>
<td>Firle Gliding Site, Sussex</td>
<td>Crew: 0 0 0 2</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The port wing dropped during the early stages of a winch-launch and began to drag through long grass causing a swing to port. The aircraft then struck rough ground and bounced about 10 ft into the air before the cable could be released. The glider was severely damaged as it fell to the ground nose first.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>18.7.71</td>
<td>Sky</td>
<td>BGA 324</td>
<td>Bradley, Nr Lasham, Hants</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The fuselage of the glider was broken when it landed in a field containing a tall crop.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>19.7.71</td>
<td>Skylark 2</td>
<td>BGA 793</td>
<td>Nr Compton Abbas, Dorset</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The glider was damaged during a landing in a field.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>24.7.71</td>
<td>Capstan</td>
<td>BGA 1311</td>
<td>Stoke Meir Aerodrome, Staffs</td>
<td>Crew: 0 0 0 2</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The fuselage fractured when the glider touched down during a crosswind landing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>30.7.71</td>
<td>T21</td>
<td>BGA 1014</td>
<td>RAF Gaydon, Warwick</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The pilot arrived over the planned touchdown point too high to make a landing. The glider eventually struck a tree on the approach to an alternative landing area.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>3.8.71</td>
<td>Olympia 463</td>
<td>BGA 1395</td>
<td>Nr Lasham, Hants</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td>3.8.71</td>
<td></td>
<td>Phoebus</td>
<td>BGA 1553</td>
<td>Nr Lasham, Hants</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The gliders collided in cloud. Both sustained damage but were able to land safely.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4. ACCIDENTS TO GLIDERS (Continued):

<table>
<thead>
<tr>
<th>Serial No</th>
<th>Date</th>
<th>Glider</th>
<th>Regn.</th>
<th>Location</th>
<th>Injury to Occupants</th>
<th>Damage to Glider</th>
</tr>
</thead>
<tbody>
<tr>
<td>242</td>
<td>4.8.71</td>
<td>Swallow</td>
<td>BGA 1357</td>
<td>Challock Gliding Site, Kent</td>
<td>Crew: 0 0 1 0</td>
<td>Destroyed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>During a low final turn into the landing site the port wing struck trees.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>7.8.71</td>
<td>Standard Cirrus</td>
<td>BGA 1633</td>
<td>Nr Newport, Pagnall, Bucks</td>
<td>Crew: 0 0 1 0</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The glider struck the far boundary fence during a field landing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>13.8.71</td>
<td>K.7</td>
<td>BGA 1349</td>
<td>Nr Wycombe Air Park (Booker), Bucks</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The pilot of the glider released the tow cable when he decided to abandon an aero-tow launch at a height of about 200 ft. The glider was damaged during the subsequent field landing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>15.8.71</td>
<td>Olympia 2b</td>
<td>BGA 618</td>
<td>Postland Aerodrome, Lincs</td>
<td>Crew: 0 1 0 0</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>When the glider was 50-75 ft above the ground on a winch-launch it was seen to climb steeply and turn through 180°. It then struck the ground in a near vertical attitude on a ploughed part of the aerodrome.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>25.8.71</td>
<td>Foka 5</td>
<td>BGA 1646</td>
<td>Nr Watlington, Oxon</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The glider ground-looped during a field landing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>30.9.71</td>
<td>K.6</td>
<td>BGA 1281</td>
<td>Asterton, Salop</td>
<td>Crew: 0 0 0 1</td>
<td>Destroyed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The glider struck a tree following an attempted landing in nil-wind conditions in a field with a downhill slope.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>6.10.71</td>
<td>K.6</td>
<td>BGA 1493</td>
<td>Dunstable Gliding Site, Beds</td>
<td>Crew: 0 0 0 1</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>At the point of touchdown the glider's tailplane became caught in tall grass and a ground-loop followed.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4. ACCIDENTS TO GLIDERS (Continued):

<table>
<thead>
<tr>
<th>Serial No</th>
<th>Date</th>
<th>Glider</th>
<th>Regn.</th>
<th>Location</th>
<th>Injury to Occupants</th>
<th>Damage to Glider</th>
</tr>
</thead>
<tbody>
<tr>
<td>249</td>
<td>18.12.71</td>
<td>T21</td>
<td>G616</td>
<td>Nympsfield Gliding Site, Glos</td>
<td>Crew: 0 0 0 2</td>
<td>Substantial</td>
</tr>
</tbody>
</table>

The glider was ground-looped on landing to avoid collision with the boundary fence.

This ends the data for tables 3 and 4, and I will leave the other tables for a later date Flowerbower.

Flowerbower darling, if you lack the intelligence to help those who do give everything to create a better world for all humankind even for evil-minded people like you, then do not knock them down.

Fact: you would not eat the food I eat to continue with this work: you would throw it in the bin.

You would never work the hours I do; to help this planet.

However, Flowerbower there is one thing that is certain about you, that is your shit sinks high heaven, and the viewers on youtube would appreciate if you could use some scent on it before plaster it all over YouTube that would be highly appreciate if you could be a sweet flower son!

The day is coming when this will be part of Swallow Command mobile field AV unit Flowerbower, and it would be a great pleasure for me to welcome you on its opening day for the entertainment of the viewers watching YouTube.

It sure will be a great day for YouTube, they will get their greatest hits ever that I feel certain.

This document released to the public by authority of:

Prof. John Roy Robert Searl Head of R&D

Manned Flight Division – human studies.

Page 17.381
A time forgotten, photos taken by the media of time that is now only a flash on record filed of a time where men and women were men and women and rally round to help to create a world that was of the future that was meant to be.

Since that period many have died the question which I ask was there really a need for them to die, would this technology had saved many of them if people were not evil and allowed it to be developed and marketed.

Yes, indeed this was the past flowerbower – you were not there to help – why knock something, which you have no knowledge upon as if you are an expert upon the subject.

Flowerbower, there are no experts on this planet today; in relation to this technology, they are only just started to be trained.

Those seen in the above press photos are the closest to becoming real experts, before to days ones who are being trained.

Unfortunate, Flowerbower you think that you are a wonderful flower, while most of us see you as a great smelly turd on the road to the future.

My son you need to buck up, pack your bags and go to the Moon, maybe NASA can give you a lift there.
This is my world of reality – not your world of fantasy – FLOWERBOWER – you have to be an imbecile to think that you are God – technically you are a criminal – as your intentions are to take away every one’s human rights to cleaner and cheaper energy and transport systems – HAIL HITLER!
Due to the function of the *Inverse-Gravity-Vehicle (I.G.V)*, it is vital to understand the Air Law of United Kingdom, as at this time is where all the research and development of the concept is taking place.

This is my world – the world of reality – it exists – I must turn into it – without generating any problems to the present conventional flying system.

There is no reason why conventional flying and the advance flying system of the *Inverse-Gravity-Vehicle (I.G.V)* cannot exists side by side in co-operation, not as a treat to conventional flying, but as an extended arm of flight.

Opening a new window for man to explore space, learn about his universe, and gain knowledge for the benefit of planet Earth.

First, we must understand functions, which are in place at this date for flight operations that is precisely what my world is all about understanding reality.

This document starts that issue – reality of flight – not fantasy – there is no time for fantasy – for new concepts to become reality – calls for devotion of an order not normal found in Earthlings.

However, there is no excuse for not trying to understand today world that is; and the world that will become tomorrow reality.
In my lecture to the team developing the **Inverse-Gravity-Vehicle (I.G.V)**, the **Demo 1**, this control sector was presented as a start to understand how air operations function at that date.

In this document, I shall present in detail what my lecture covered in detail, so you may understand my position at that time – the world of reality is extremely hard going and extremely costly to get underway.

But like all present day flight operations they succeeded, therefore, based upon that **FACT**, I see no reason whatsoever why this concept should not succeed.

There is only one condition that could block it that is **IGNORANCE AND GREED**, there is no more dangerous combination that exist which stops this planet from progress.

Let me now release again the details of that lecture so all may study and understand in more detail what I have to contend with and why it cost so much to undertake both in hard cash and in time consumption.

It is my pleasure to present my life to you, which I hope will give you young ones hope for the future and faith in all that you undertake to achieve success – never let idiots stop you from trying.

Page 17.385
Insert – hello Flowerbower my son, for your world of insanity – this is my world of reality.

I accept that you do not have the intelligence which is clearly exposed on YouTube to understand this; by a boy who had no formal education can and do understand this; whereas you as a youngest had formal education have no idea whatsoever what this world of reality is about.

I guess Mountbatten is correct there is money in shit, he should know he meet many farmers, and I guess you are paid to produce shit as well.

Page 17.386
2.1 Outbound Routes

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLAMORGAN/Rhose</td>
<td>A25(N)</td>
<td>NDB “RHO” to VOR “BCN”</td>
</tr>
<tr>
<td>G1(W)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIR north of G1</td>
<td>A25(S)</td>
<td>Direct</td>
</tr>
<tr>
<td>G1(E)</td>
<td></td>
<td>NDB “RHO” to NDB “LGT” to “Chepstow” reporting point.</td>
</tr>
<tr>
<td>BRISTOL/Lulsgate</td>
<td>G1(E)</td>
<td>NDB “LGT” to “Chepstow” reporting point.</td>
</tr>
<tr>
<td></td>
<td>A25(S)</td>
<td>NDB “LGT” to NDB “RHO”.</td>
</tr>
<tr>
<td></td>
<td>G1(W)</td>
<td>NDB “LGT” to NDB “RHO” to VOR “BCN”</td>
</tr>
<tr>
<td></td>
<td>A25(N)</td>
<td></td>
</tr>
</tbody>
</table>

2.2 Inbound Routes

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>A25(N)</td>
<td>GLAMORGAN/Rhose</td>
<td>VOR “BCN” to NDB “RHO”</td>
</tr>
<tr>
<td>G1(W)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A25(S)</td>
<td></td>
<td>Direct to NDB “RHO”</td>
</tr>
<tr>
<td>G1(E)</td>
<td></td>
<td>“Chepstow” reporting point to NDB “LGT” to NDB “RHO”</td>
</tr>
<tr>
<td>G1(E)</td>
<td>BRISTOL/Lulsgate</td>
<td>“Chepstow” reporting point to NDB “LGT”</td>
</tr>
<tr>
<td>A25(S)</td>
<td></td>
<td>NDB “RHO” to NDB “LGT”</td>
</tr>
<tr>
<td>G1(W)</td>
<td></td>
<td>VOR “BCN” to NDB “RHO” to NDB “LGT”</td>
</tr>
<tr>
<td>A25(N)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3 Internal Flights

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLAMORGAN/Rhose</td>
<td>BRISTOL/Lulsgate</td>
<td>NDB “RHO” to NDB “LGT”</td>
</tr>
<tr>
<td>BRISTOL/Lulsgate</td>
<td>GLAMORGAN/Rhose</td>
<td>NDB “LGT” to NDB “RHO”</td>
</tr>
</tbody>
</table>

3. Holding

3.1 Holding patterns for aircraft holding in the Bristol Channel Control Area and Rhose Control Zone are as follows:—

3.2 BRISTOL/Lulsgate NDB—Standard Holding Pattern—holding axis 100° MAG. The lowest holding altitude is 2,500 feet QNH.

3.3 GLAMORGAN/Rhose NDB “RHO”—Standard Holding Pattern—holding axis 216° MAG. The lowest holding altitude is 2,500 feet QNH.

INSERT – Flowerbower you beautiful flower – insane yes – conman yes – a crap dealer yes – evil person yes – you get paid for crap I guess so – so you belong to the world of shithouse how nice – you sure like the sink
THE WORLD OF REALITY AIR PILOT:

3.4 Aircraft may also be instructed to hold on the Brecon VOR up to and including FL 50 on a Standard pattern on a holding axis of 191° MAG.

4. RHOOSE SPECIAL RULES ZONE AND SPECIAL RULES AREA

4.1 A Special Rules Zone around Rhoose Airport is established consisting of the airspace within a circle, radius 5 nm, centred on 512351N 032047W from ground level to FL 55.

4.2 A Special Rules Area is established within the area defined by straight lines joining:—

512724N 031508W —
512106N 030510W —
511732N 030804W —
511855N 032200W,

thence by an arc of a circle, radius 5 nm, centred on 512351N 032047W,

through East to
512724N 031508W,

from 1,000 feet ALT to 3,000 feet ALT.

4.3 A pilot who intends to fly within the Rhoose Special Rules Zone or Special Rules Area must:—

a. obtain the permission of the ATC unit at the aerodrome and inform the ATC unit, on the notified radio frequency appropriate to the circumstances, of the aircraft’s position, level and track; and,

b. while so flying, maintain a continuous watch on that frequency and comply with any instructions which the ATC unit at the aerodrome may give in the particular case.

To be or not to be is indeed a good question as time has shown that man’s efforts to block progress will in the end lose out, progress will win for without progress the planet will die – and without risks, there would be no tomorrows, just today as it is for all other living creatures.

Only to experience season changes as a routine operation, but fortunate we are blessed with the ability to make a change but according to the Law of the Squares there are two prime states available being:

(1) To destroy

(2) To create

Man has proven that he is damn good at destroying the planet; it would be great to actually see man creating a planet of paradise instead.

That is my world of reality creating a better world for all humankind regardless, a world where people are human and live as one to survive Flowerbower – not like your world to destroy the future for all humankind.
THE WORLD OF REALITY AIR PILOT:

Thank all of you who have sent me communication that all I need to do is fly the I.G.V. into any airport.

Agree, that does sound like a good idea, and in reality, it would be perfect if there was no other flight system in operation, sadly to say there are flight systems in operation.

They operate under certain rules to maintain safety, or more precise attempt to maintain safety in the air.

Once you lift of the surface of a planet, you are responsible to maintain safety for others using the same space and you and these rules have been agreed upon by arbitration to help you to maintain a safety at all times during that flight transition.

Sometimes human error pops into the flight plan through communications by those who are trying to maintain order of function, and at all times one must be alert to such possibility happening and recheck what appears not to be correct action.

It is important, as I have found in conventional flying that you could be in the wrong place at the wrong time.

And you see a flight of fighters flashing past you at rather close quarters, not that I worried about that issue, but it exposes the need of communications to know that you need to watch out for a problem that is rushing towards you and what that problem is.

I had to climb quickly and hold until they had cleared the road before continuing my training practice of spinning.

Yes FLOWERBOWER, I have flown at night in thick fog and landed at Blackbushe airport where you were just able to see the runway surface as the wheels were about to touch; on my return from Amsterdam.

All this is possible because of the Air rules.

That is the reality, in which I have to exist.

Because of the very nature of my research and development requires from me to be a responsible person in control of dangerous forces to act in a manner, which will not create accidents with other users of flight.

I am a responsive person and shall make my actions safe to all other users of the air whether its business or pleasure, makes no difference.

This is the future that is meant to be, time will give birth to it: as it has done for all other flight system now in operation.

The world had accepted the expert’s claims that a heavier than air aircraft could not fly.

Based upon that claim: we can state that expertise cannot foretell the future possibilities in technology of flight.
THE WORLD OF REALITY AIR PILOT:

1 RESPONSIBLE AUTHORITY:
Responsibility for the overall administration of the Air Traffic Services in the United Kingdom is vested in the Controller of the National Air Traffic Services (CNATS) of the Civil Aviation Authority (CAA) acting under the powers of the Secretaries of State for Trade and for Defence.

Postal address: Controller
National Air Traffic Services
Civil Aviation Authority
129 Kingsway
London WC2B 6NN.

Telegraphic address: CIVIL AIR LONDON
Aeronautical address: EGGAYA
Telex: 22119 CIVIL AIR

2 AREA OF RESPONSIBILITY:
Air Traffic Services as indicated in the following paragraphs are provided for that airspace above the UK and the surrounding seas within the London and Scottish FIRs but excluding a certain portion of the Scottish FIR at 3,000 ft. amsl and below.

By arrangement with the appropriate authorities, the area is extended to include the Channel Islands Control Zone, certain portions of airspace over the Republic of Ireland and its territorial waters and a portion of the Norwegian airspace up to and including 3,000 ft. amsl.

3 Under the terms of a bi-lateral contract between the European Organisation for the Safety of Air Navigation (Eurocontrol) and the UK Government, Air Traffic Services above FL245 are provided by the London and Scottish ATCCs throughout the entire UK FIR / UIR and certain portions of airspace over the Republic of Ireland and its territorial waters.

4 By agreement with the North Atlantic Provider States, Air Traffic Services are provided by Scottish ATCC for the airspace over the high seas encompassed by the boundaries of the Shanwick Oceanic Control Area.

5 Under the terms of bi-lateral agreements between the UK and Denmark and the UK and Norway, responsibility for providing Air Traffic Services to all aircraft at 3,000 ft. amsl and below in these areas of their FIRs between the FIR boundary and the line of demarcation of National areas for the exploration and exploitation of national resources from the sea bed (the Median Line), has been transferred to the nation exploiting the national resources of the area.

6 Detailed description and Charts of the divisions of all airspace for which the UK has responsibility will appear in another section of this book.

My dearly beloved Flowerbower son or daughter whom we all appreciate belong to a shithouse which has never been clean since it was open for use many years ago, and you lap up that rich aroma and thrive upon it bless you my darling!

Guess you are paid for this crap and hope they will pay your court bills and cost when you appear before the Supreme Court in Washington DC as a poison pen writer, slander just for starters that most likely cost you $1m compensation.
3 AIR TRAFFIC SERVICES:

With the exception of certain military aerodromes, municipal airports and Swallow Command, CAA provides Air Traffic Services in the UK.

Air Traffic Control, alerting and Flight Information Services as appropriate are supplied by various ATC Units.

Details will be given later.

Procedures in the UK generally conform to the ICAO standards, Recommended Practices and Procedures but where National differences exist, these are specified at the appropriate places in other RAC parts.

4 CO-ORDINATION BETWEEN THE OPERATOR AND ATS:

Co-ordination between the operator Swallow Command and air traffic services is effected in accordance with 2.11 of Annex 11 and 2.1.1.4 and 2.1.1.5 of Part VIII of PANS-RAC (Doc 4444-RAC 501).

5 DEFINITIONS:

The definitions listed in Chapter 1 of ICAO Annex 2 and / or Part 1 of ICAO Doc 4444 applies throughout the UK AIP except for these terms given in List A where the UK has an interpretation, which differs from the ICAO definition.

List B gives definitions of terms which are not defined in either Annex 2 or Doc 4444 but which the UK has found necessary for clarification.

6 REFERENCES TO LEGISLATION:

NOTIFICATION:

When material in the RAC Section is “notified” (see GEN 1) a formal statement of notification is included in the sub-section concerned.

GENERAL REFERENCES TO LEGISLATION:

For the additional guidance of pilots and all concerned, like me, references to the provisions of the relevant legislation are included in the text of some sub-sections of the RAC Section.

Where the reference is not given in full, the following abbreviations are used:-

Dear Flowerbower; has this blown your brains – yes I appreciate you have no bloody idea what I am talking about, with all that great education that is not worth the steam off my piss that you claim you got.

Page 17.391
This completes this first part if that lecture, sorry about inserting this nut case in here unfortunate he / she needs to be taught how to have manners and not to insults others unless he / she wants the same returned to them.

You note that I include the term she, because some readers think it is; I do not mine if it’s a male or female arse that I actually ended up canning; it will be the same pleasure for me and the same pleasure for them at the receiving end of the cane.

Until the next time we meet, take care and thank you for your time in reading this document.

This document released by authority of:

There is one major question about flight: that is vital important issue and that is navigation.

If you look in the dictionary for the word ‘navigate’ you may have the impression that it concerns only ships and aircraft, without a doubt that is the case for Swallow Command, but just here, I want to look at it in its full relationship, where we usually mean it to include finding one’s way in any circumstances.

When you go from one place to another, whether on foot or in some form of vehicle, you may possibly look at a map before starting out, to decide what roads to take and which towns to pass through.

During the journey, you will refer to signposts to make sure that you are going the right direction.

This is just as much as ‘navigation’ as anything done by the navigator of a ship or aeroplane, even though it may not be so complicated.

How do you find your way from anywhere to anywhere?

This may sound a silly question, but think about it for a while.

If we see something on the other side of a room and we wish to get to it, we navigate our way by looking at the object and walking towards it.

If that something is in another room where we cannot see it, we navigate our way around the house using familiar objects to guide us.

When moving around our town or village we find our way by referring to landmarks that we know.

What happens, though, when we want to navigate our way to something, which we cannot see, in a house or district, which we do not know?

Well Flowerbower, what is your answer, guess it is beyond your capability to answer with a brain full of crap.

Page 17.392
We then need someone to give us directions.

They may do this either by telling us verbally or by drawing, a diagram with landmarks and turnings marked on it.

If they do this, then, of course, they have drawn a map.

Now just stop and think: a mission to Mars; there are no towns, roads, sign posts to guide you, but today we are lucky to have radio communications and radar by which we can be guided to Mars.

Thus, these two inventions have made it possible to carry out such a mission.

Nevertheless once landed there are no maps, unless, by then someone has sent robots up and film the planet in detail and created maps ready.

Agree today, we can easy navigate from any point to any point on earth thanks to the invention of the satellites, which can show us the way.

However, at this time there are no such satellites orbiting planet Mars by which to guide you around.

It will be like centuries ago on planet earth, follow stars by night and the sun by day.

If you could go up in a helicopter and see the unfamiliar district, or could take a roof off the house and see the layout of the rooms, this would help you find your way when you were on level ground, because you would carry a picture of these places in your head.

A map is just such a picture: it shows in miniature where things are on the ground in relation to each other.

A map can show us how to get from one side of our town to the other or from one side of our country to the other, or to the other side of the world.

This is all very well so long as there are landmarks to be seen, but suppose we are in the middle of an ocean or in an aeroplane over cloud or in the middle of a featureless desert?

A map in these circumstances is useless and we have to find some other way of telling our position.

This, to most people, is where navigation really comes in, and perhaps they are right in a way; because when you cannot see where you are going you actually have to work something out, and this sounds more difficult.

However, it is a lot easier to make calculations with modern instruments.

I stated that on land, we can refer to landmarks, but what is a landmark?

It is something unique, which enables us to tell for certain that we are in one particular place and not in another.

A tall building, a lighthouse and a road junction can all be landmarks.

Sometimes we have to put two things together to make sure of our position.

There may be three or four tall buildings exactly alike and close to one another and then we have to distinguish the one we want by some other means,
Possible three of them are next to roads but the one we want is next to a railway: we then use both the building and the railway to make sure of our landmark.

Incidentally, a second check of this sort is always advisable when map reading.

A landmark is a special spot on the earth’s surface which tells us exactly where we are but, when you come to think of it, every spot is a special spot; it is just that most have nothing special to distinguish them from any other spot.

Every waver on the ocean is a special wave, but is useless as a landmark because a navigator cannot distinguish it from any others and say, ‘That is the wave I am looking for,’

Lord Baden-Powell: the first Chief Scout used to tell a story about some Australian aborigines who went to sea for the first time.

They stood staring at the waves, very puzzled, looking for the tracks on them.

They simply could not understand how anyone could find the way without tracks to follow.

I think that this simple explanation says clearly, what Mars will present to us; until robots have return, enough data back to us, which we can covert to maps from which man / women will be able to find spots that are needed for the mission undertaking to be achieved.

Man has indeed progress from the days I was born to the present – they is no end to progress – except this planets time ends.

Through satellite technology and devotion to the development, we have today gain vast amount of data upon our universe and planet Mars that we never knew when I was born.

This is my world – the world of reality – not your world of fantasy Flowerbower- you will never fit into the world of reality you are far too mentally sick.

To all viewers watching this site please remember I have to try to write as simple as possible and explain items as simple as possible so all can understand what is being stated, this can be difficult as I am not an artists, just a simple old uneducated man by the standards of experts.

As long as you understand what I mean, then there is no problem never mind the grammar or spelling, they do not create an S.E.G. Hard word devoted effort and time that is what creates the S.E.G.

If you are an expert on English, Grammar and spelling then you are not an expert on the S.E.G.
No 53 PZ30 was a popular rectifier valve used by me in the Searl Technology.

Page 17.395
No 53 PZ30 rest of the available data of that time being used by me in the Searl Technology.
No 28 EF50 many of these red metal bottles were used by me in this research and development work.
MY WORLD OF REALITY-HOW IT USED TO BE:

No 28 EF50 rests of the data available to me for my research and development of the Searl Technology.
Take note:

This is my actual flight computer.

This image alone counters the flowerbower’s crap; which is plastered on YouTube.

It exposes this person as a poison pen writer that is operating a hate campaign; and no doubt being paid to do so.

The work claimed in this book is currently moving full-steam ahead with my team in Thailand.

There is no way we will let one bent and evil individual stop the progress for a better future for all involving clean energy and transportation systems.
Here is my flight computer for the benefit of that idiot that goes by the name flowerbower.

I shall close this part at this point and sincerely hoping that all have a better understanding about my life and work.

This document released to the public by the authority of:

Prof. J. R. R. Searl.
Manned Flight Division.
Swallow Command.